Added lorentz variation

This commit is contained in:
Thorsten Sommer 2020-10-30 22:52:44 +01:00
parent 95e237f562
commit e01e89f3f8
2 changed files with 145 additions and 0 deletions

View File

@ -0,0 +1,36 @@
using System;
using System.Threading;
using System.Threading.Tasks;
namespace FastRng.Double.Distributions
{
public sealed class CauchyLorentzX1 : IDistribution
{
private const double CONSTANT = 0.31;
private const double SCALE = 0.1;
private const double MEDIAN = 1.0;
private ShapeFitter fitter;
private IRandom random;
public IRandom Random
{
get => this.random;
set
{
this.random = value;
this.fitter = new ShapeFitter(CauchyLorentzX1.ShapeFunction, this.random, 100);
}
}
private static double ShapeFunction(double x) => CONSTANT * (1.0 / (Math.PI * SCALE)) * ((SCALE * SCALE) / (Math.Pow(x - MEDIAN, 2) + (SCALE * SCALE)));
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
{
if (this.Random == null)
return double.NaN;
return await this.fitter.NextNumber(token);
}
}
}

View File

@ -0,0 +1,109 @@
using System;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Threading.Tasks;
using FastRng.Double;
using NUnit.Framework;
namespace FastRngTests.Double.Distributions
{
[ExcludeFromCodeCoverage]
public class CauchyLorentzX1
{
[Test]
[Category(TestCategories.COVER)]
[Category(TestCategories.NORMAL)]
public async Task TestCauchyDistribution01()
{
// The properties of the cauchy distribution cannot be tested by mean, media or variance,
// cf. https://en.wikipedia.org/wiki/Cauchy_distribution#Explanation_of_undefined_moments
var dist = new FastRng.Double.Distributions.CauchyLorentzX1();
var fqa = new FrequencyAnalysis();
var rng = new MultiThreadedRng();
for (var n = 0; n < 100_000; n++)
fqa.CountThis(await rng.NextNumber(dist));
rng.StopProducer();
var result = fqa.NormalizeAndPlotEvents(TestContext.WriteLine);
Assert.That(result[0], Is.EqualTo(0.009966272570142).Within(0.003));
Assert.That(result[1], Is.EqualTo(0.010168596941156).Within(0.003));
Assert.That(result[2], Is.EqualTo(0.010377123221893).Within(0.005));
Assert.That(result[21], Is.EqualTo(0.015956672819692).Within(0.005));
Assert.That(result[22], Is.EqualTo(0.016366904083094).Within(0.005));
Assert.That(result[23], Is.EqualTo(0.016793067514802).Within(0.005));
Assert.That(result[50], Is.EqualTo(0.039454644029179).Within(0.015));
Assert.That(result[75], Is.EqualTo(0.145970509936354).Within(0.03));
Assert.That(result[85], Is.EqualTo(0.333365083503296).Within(0.1));
Assert.That(result[90], Is.EqualTo(0.545171628270584).Within(0.1));
Assert.That(result[97], Is.EqualTo(0.948808314586302).Within(0.06));
Assert.That(result[98], Is.EqualTo(0.976990739772032).Within(0.03));
Assert.That(result[99], Is.EqualTo(0.986760647169751).Within(0.02));
}
[Test]
[Category(TestCategories.COVER)]
[Category(TestCategories.NORMAL)]
public async Task TestCauchyGeneratorWithRange01()
{
var dist = new FastRng.Double.Distributions.CauchyLorentzX0();
var rng = new MultiThreadedRng();
var samples = new double[1_000];
for (var n = 0; n < samples.Length; n++)
samples[n] = await rng.NextNumber(-1.0, 1.0, dist);
rng.StopProducer();
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min is out of range");
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
}
[Test]
[Category(TestCategories.COVER)]
[Category(TestCategories.NORMAL)]
public async Task TestCauchyGeneratorWithRange02()
{
var dist = new FastRng.Double.Distributions.CauchyLorentzX0();
var rng = new MultiThreadedRng();
var samples = new double[1_000];
for (var n = 0; n < samples.Length; n++)
samples[n] = await rng.NextNumber(0.0, 1.0, dist);
rng.StopProducer();
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
}
[Test]
[Category(TestCategories.COVER)]
[Category(TestCategories.NORMAL)]
public async Task TestCauchyGeneratorWithRange03()
{
var rng = new MultiThreadedRng();
var dist = new FastRng.Double.Distributions.CauchyLorentzX0 { Random = rng }; // Test default parameters
var samples = new double[1_000];
for (var n = 0; n < samples.Length; n++)
samples[n] = await dist.GetDistributedValue();
rng.StopProducer();
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
}
[Test]
[Category(TestCategories.COVER)]
[Category(TestCategories.NORMAL)]
public async Task NoRandomNumberGenerator01()
{
var dist = new FastRng.Double.Distributions.CauchyLorentzX0();
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
Assert.That(await dist.GetDistributedValue(), Is.NaN);
}
}
}