Migrated log normal distribution to shape fitter
This commit is contained in:
parent
e2f292a6ff
commit
a710226941
@ -1,35 +0,0 @@
|
|||||||
using System;
|
|
||||||
using System.Threading;
|
|
||||||
using System.Threading.Tasks;
|
|
||||||
|
|
||||||
namespace FastRng.Double.Distributions
|
|
||||||
{
|
|
||||||
public sealed class LogNormal : IDistribution
|
|
||||||
{
|
|
||||||
private double sigma = 1.0;
|
|
||||||
public IRandom Random { get; set; }
|
|
||||||
|
|
||||||
public double Mu { get; set; } = 0.0;
|
|
||||||
|
|
||||||
public double Sigma
|
|
||||||
{
|
|
||||||
get => this.sigma;
|
|
||||||
set
|
|
||||||
{
|
|
||||||
if(value <= 0.0)
|
|
||||||
throw new ArgumentOutOfRangeException(message: "Sigma must be greater than 0", null);
|
|
||||||
|
|
||||||
this.sigma = value;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
|
||||||
{
|
|
||||||
if (this.Random == null)
|
|
||||||
return double.NaN;
|
|
||||||
|
|
||||||
var normal = await this.Random.NextNumber(new Normal(), token); // TODO: Check all distributions. Used distributions must be static readonly! Probably, after refactoring, no distribution should depend on any other!
|
|
||||||
return Math.Exp(normal);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
43
FastRng/Double/Distributions/LogNormalS1M0.cs
Normal file
43
FastRng/Double/Distributions/LogNormalS1M0.cs
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
using System;
|
||||||
|
using System.Threading;
|
||||||
|
using System.Threading.Tasks;
|
||||||
|
|
||||||
|
namespace FastRng.Double.Distributions
|
||||||
|
{
|
||||||
|
public sealed class LogNormalS1M0 : IDistribution
|
||||||
|
{
|
||||||
|
private const double SIGMA = 1.0;
|
||||||
|
private const double MU = 0.0;
|
||||||
|
private const double CONSTANT = 1.51998658387455;
|
||||||
|
|
||||||
|
private static readonly double FACTOR;
|
||||||
|
|
||||||
|
private ShapeFitter fitter;
|
||||||
|
private IRandom random;
|
||||||
|
|
||||||
|
static LogNormalS1M0()
|
||||||
|
{
|
||||||
|
FACTOR = SIGMA * Math.Sqrt(2 * Math.PI);
|
||||||
|
}
|
||||||
|
|
||||||
|
public IRandom Random
|
||||||
|
{
|
||||||
|
get => this.random;
|
||||||
|
set
|
||||||
|
{
|
||||||
|
this.random = value;
|
||||||
|
this.fitter = new ShapeFitter(LogNormalS1M0.ShapeFunction, this.random, 100);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private static double ShapeFunction(double x) => (CONSTANT / (x * FACTOR)) * Math.Exp( -(Math.Pow(Math.Log(x) - MU, 2) / (2 * Math.Pow(SIGMA, 2))));
|
||||||
|
|
||||||
|
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||||
|
{
|
||||||
|
if (this.Random == null)
|
||||||
|
return double.NaN;
|
||||||
|
|
||||||
|
return await this.fitter.NextNumber(token);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -8,31 +8,40 @@ using NUnit.Framework;
|
|||||||
namespace FastRngTests.Double.Distributions
|
namespace FastRngTests.Double.Distributions
|
||||||
{
|
{
|
||||||
[ExcludeFromCodeCoverage]
|
[ExcludeFromCodeCoverage]
|
||||||
public class LogNormal
|
public class LogNormalS1M0
|
||||||
{
|
{
|
||||||
[Test]
|
[Test]
|
||||||
[Category(TestCategories.COVER)]
|
[Category(TestCategories.COVER)]
|
||||||
[Category(TestCategories.NORMAL)]
|
[Category(TestCategories.NORMAL)]
|
||||||
public async Task TestLogNormalDistribution01()
|
public async Task TestLogNormalDistribution01()
|
||||||
{
|
{
|
||||||
const double MU = 0.1;
|
var dist = new FastRng.Double.Distributions.LogNormalS1M0();
|
||||||
const double SIGMA = 0.25;
|
var fra = new FrequencyAnalysis();
|
||||||
var mean = Math.Exp(MU + SIGMA * SIGMA * 0.5);
|
|
||||||
var variance = Math.Abs(Math.Exp(SIGMA * SIGMA) - 1) * Math.Exp(2 * MU + SIGMA * SIGMA);
|
|
||||||
|
|
||||||
var dist = new FastRng.Double.Distributions.LogNormal{ Mu = MU, Sigma = SIGMA };
|
|
||||||
var stats = new RunningStatistics();
|
|
||||||
var rng = new MultiThreadedRng();
|
var rng = new MultiThreadedRng();
|
||||||
|
|
||||||
for (var n = 0; n < 100_000; n++)
|
for (var n = 0; n < 100_000; n++)
|
||||||
stats.Push(await rng.NextNumber(dist));
|
fra.CountThis(await rng.NextNumber(dist));
|
||||||
|
|
||||||
rng.StopProducer();
|
rng.StopProducer();
|
||||||
TestContext.WriteLine($"mean={mean} vs. {stats.Mean}");
|
var result = fra.NormalizeAndPlotEvents(TestContext.WriteLine);
|
||||||
TestContext.WriteLine($"variance={variance} vs {stats.Variance}");
|
|
||||||
|
Assert.That(result[0], Is.EqualTo(0.001505531).Within(0.003));
|
||||||
|
Assert.That(result[1], Is.EqualTo(0.014408709).Within(0.01));
|
||||||
|
Assert.That(result[2], Is.EqualTo(0.043222256).Within(0.014));
|
||||||
|
|
||||||
Assert.That(stats.Mean, Is.EqualTo(mean).Within(0.1), "Mean is out of range");
|
Assert.That(result[21], Is.EqualTo(0.876212056).Within(0.099));
|
||||||
Assert.That(stats.Variance, Is.EqualTo(variance).Within(0.1), "Variance is out of range");
|
Assert.That(result[22], Is.EqualTo(0.895582226).Within(0.099));
|
||||||
|
Assert.That(result[23], Is.EqualTo(0.912837250).Within(0.099));
|
||||||
|
|
||||||
|
Assert.That(result[50], Is.EqualTo(0.948062005).Within(0.099));
|
||||||
|
|
||||||
|
Assert.That(result[75], Is.EqualTo(0.768584762).Within(0.089));
|
||||||
|
Assert.That(result[85], Is.EqualTo(0.697303612).Within(0.089));
|
||||||
|
Assert.That(result[90], Is.EqualTo(0.663570581).Within(0.089));
|
||||||
|
|
||||||
|
Assert.That(result[97], Is.EqualTo(0.618792767).Within(0.089));
|
||||||
|
Assert.That(result[98], Is.EqualTo(0.612636410).Within(0.089));
|
||||||
|
Assert.That(result[99], Is.EqualTo(0.606540679).Within(0.089));
|
||||||
}
|
}
|
||||||
|
|
||||||
[Test]
|
[Test]
|
||||||
@ -41,9 +50,10 @@ namespace FastRngTests.Double.Distributions
|
|||||||
public async Task TestLogNormalGeneratorWithRange01()
|
public async Task TestLogNormalGeneratorWithRange01()
|
||||||
{
|
{
|
||||||
var rng = new MultiThreadedRng();
|
var rng = new MultiThreadedRng();
|
||||||
|
var dist = new FastRng.Double.Distributions.LogNormalS1M0();
|
||||||
var samples = new double[1_000];
|
var samples = new double[1_000];
|
||||||
for (var n = 0; n < samples.Length; n++)
|
for (var n = 0; n < samples.Length; n++)
|
||||||
samples[n] = await rng.NextNumber(-1.0, 1.0, new FastRng.Double.Distributions.LogNormal());
|
samples[n] = await rng.NextNumber(-1.0, 1.0, dist);
|
||||||
|
|
||||||
rng.StopProducer();
|
rng.StopProducer();
|
||||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min out of range");
|
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min out of range");
|
||||||
@ -56,9 +66,10 @@ namespace FastRngTests.Double.Distributions
|
|||||||
public async Task TestLogNormalGeneratorWithRange02()
|
public async Task TestLogNormalGeneratorWithRange02()
|
||||||
{
|
{
|
||||||
var rng = new MultiThreadedRng();
|
var rng = new MultiThreadedRng();
|
||||||
|
var dist = new FastRng.Double.Distributions.LogNormalS1M0();
|
||||||
var samples = new double[1_000];
|
var samples = new double[1_000];
|
||||||
for (var n = 0; n < samples.Length; n++)
|
for (var n = 0; n < samples.Length; n++)
|
||||||
samples[n] = await rng.NextNumber(0.0, 1.0, new FastRng.Double.Distributions.LogNormal());
|
samples[n] = await rng.NextNumber(0.0, 1.0, dist);
|
||||||
|
|
||||||
rng.StopProducer();
|
rng.StopProducer();
|
||||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
||||||
@ -71,7 +82,7 @@ namespace FastRngTests.Double.Distributions
|
|||||||
public async Task TestLogNormalGeneratorWithRange03()
|
public async Task TestLogNormalGeneratorWithRange03()
|
||||||
{
|
{
|
||||||
var rng = new MultiThreadedRng();
|
var rng = new MultiThreadedRng();
|
||||||
var dist = new FastRng.Double.Distributions.LogNormal { Random = rng }; // Test default parameters
|
var dist = new FastRng.Double.Distributions.LogNormalS1M0 { Random = rng }; // Test default parameters
|
||||||
|
|
||||||
var samples = new double[1_000];
|
var samples = new double[1_000];
|
||||||
for (var n = 0; n < samples.Length; n++)
|
for (var n = 0; n < samples.Length; n++)
|
||||||
@ -82,29 +93,12 @@ namespace FastRngTests.Double.Distributions
|
|||||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
||||||
}
|
}
|
||||||
|
|
||||||
[Test]
|
|
||||||
[Category(TestCategories.COVER)]
|
|
||||||
[Category(TestCategories.NORMAL)]
|
|
||||||
public void ParameterTest01()
|
|
||||||
{
|
|
||||||
var dist = new FastRng.Double.Distributions.LogNormal();
|
|
||||||
|
|
||||||
Assert.DoesNotThrow(() => dist.Mu = -45);
|
|
||||||
Assert.DoesNotThrow(() => dist.Mu = 15);
|
|
||||||
Assert.DoesNotThrow(() => dist.Mu = 0);
|
|
||||||
|
|
||||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Sigma = 0);
|
|
||||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Sigma = -78);
|
|
||||||
Assert.DoesNotThrow(() => dist.Sigma = 0.0001);
|
|
||||||
Assert.DoesNotThrow(() => dist.Sigma = 4);
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
[Test]
|
||||||
[Category(TestCategories.COVER)]
|
[Category(TestCategories.COVER)]
|
||||||
[Category(TestCategories.NORMAL)]
|
[Category(TestCategories.NORMAL)]
|
||||||
public async Task NoRandomNumberGenerator01()
|
public async Task NoRandomNumberGenerator01()
|
||||||
{
|
{
|
||||||
var dist = new FastRng.Double.Distributions.LogNormal();
|
var dist = new FastRng.Double.Distributions.LogNormalS1M0();
|
||||||
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
|
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
|
||||||
Assert.That(await dist.GetDistributedValue(), Is.NaN);
|
Assert.That(await dist.GetDistributedValue(), Is.NaN);
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user