Migrated inverse gamma distribution to shape fitter
This commit is contained in:
parent
8b752c17ee
commit
66d58e74d3
@ -1,36 +0,0 @@
|
||||
using System;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace FastRng.Double.Distributions
|
||||
{
|
||||
public sealed class InverseGamma : IDistribution
|
||||
{
|
||||
private double shape = 1.0;
|
||||
|
||||
public IRandom Random { get; set; }
|
||||
|
||||
public double Shape
|
||||
{
|
||||
get => this.shape;
|
||||
set
|
||||
{
|
||||
if(value <= 0.0)
|
||||
throw new ArgumentOutOfRangeException(message: "Shape must be greater than 0", null);
|
||||
|
||||
this.shape = value;
|
||||
}
|
||||
}
|
||||
|
||||
public double Scale { get; set; } = 1.0;
|
||||
|
||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||
{
|
||||
if (this.Random == null)
|
||||
return double.NaN;
|
||||
|
||||
var gammaDist = new Gamma{ Shape = this.Shape, Scale = 1.0 / this.Scale };
|
||||
return 1.0 / await this.Random.NextNumber(gammaDist, token);
|
||||
}
|
||||
}
|
||||
}
|
46
FastRng/Double/Distributions/InverseGammaA3B05.cs
Normal file
46
FastRng/Double/Distributions/InverseGammaA3B05.cs
Normal file
@ -0,0 +1,46 @@
|
||||
using System;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace FastRng.Double.Distributions
|
||||
{
|
||||
public sealed class InverseGammaA3B05 : IDistribution
|
||||
{
|
||||
private const double ALPHA = 3.0;
|
||||
private const double BETA = 0.5;
|
||||
private const double CONSTANT = 0.213922656884911;
|
||||
|
||||
private static readonly double FACTOR_LEFT;
|
||||
|
||||
private ShapeFitter fitter;
|
||||
private IRandom random;
|
||||
|
||||
static InverseGammaA3B05()
|
||||
{
|
||||
var gammaAlpha = MathTools.Gamma(ALPHA);
|
||||
var betaToTheAlpha = Math.Pow(BETA, ALPHA);
|
||||
|
||||
FACTOR_LEFT = CONSTANT * (betaToTheAlpha / gammaAlpha);
|
||||
}
|
||||
|
||||
public IRandom Random
|
||||
{
|
||||
get => this.random;
|
||||
set
|
||||
{
|
||||
this.random = value;
|
||||
this.fitter = new ShapeFitter(InverseGammaA3B05.ShapeFunction, this.random, 100);
|
||||
}
|
||||
}
|
||||
|
||||
private static double ShapeFunction(double x) => FACTOR_LEFT * Math.Pow(x, -ALPHA - 1.0d) * Math.Exp(-BETA / x);
|
||||
|
||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||
{
|
||||
if (this.Random == null)
|
||||
return double.NaN;
|
||||
|
||||
return await this.fitter.NextNumber(token);
|
||||
}
|
||||
}
|
||||
}
|
@ -8,31 +8,40 @@ using NUnit.Framework;
|
||||
namespace FastRngTests.Double.Distributions
|
||||
{
|
||||
[ExcludeFromCodeCoverage]
|
||||
public class InverseGamma
|
||||
public class InverseGammaA3B05
|
||||
{
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestInverseGammaDistribution01()
|
||||
{
|
||||
const double SHAPE = 3.0;
|
||||
const double SCALE = 1.2;
|
||||
const double MEAN = SCALE / (SHAPE - 1);
|
||||
const double VARIANCE = SCALE * SCALE / ((SHAPE - 1) * (SHAPE - 1) * (SHAPE - 2));
|
||||
|
||||
var dist = new FastRng.Double.Distributions.InverseGamma{ Shape = SHAPE, Scale = SCALE };
|
||||
var stats = new RunningStatistics();
|
||||
var dist = new FastRng.Double.Distributions.InverseGammaA3B05();
|
||||
var fra = new FrequencyAnalysis();
|
||||
var rng = new MultiThreadedRng();
|
||||
|
||||
for (var n = 0; n < 100_000; n++)
|
||||
stats.Push(await rng.NextNumber(dist));
|
||||
fra.CountThis(await rng.NextNumber(dist));
|
||||
|
||||
rng.StopProducer();
|
||||
TestContext.WriteLine($"mean={MEAN} vs. {stats.Mean}");
|
||||
TestContext.WriteLine($"variance={VARIANCE} vs {stats.Variance}");
|
||||
var result = fra.NormalizeAndPlotEvents(TestContext.WriteLine);
|
||||
|
||||
Assert.That(stats.Mean, Is.EqualTo(MEAN).Within(0.1), "Mean is out of range");
|
||||
Assert.That(stats.Variance, Is.EqualTo(VARIANCE).Within(0.1), "Variance is out of range");
|
||||
Assert.That(result[0], Is.EqualTo(0.0000000000000003).Within(0.0000001));
|
||||
Assert.That(result[1], Is.EqualTo(0.0000011605257228).Within(0.00001));
|
||||
Assert.That(result[2], Is.EqualTo(0.0009536970016103).Within(0.0005));
|
||||
|
||||
Assert.That(result[21], Is.EqualTo(0.5880485243048120).Within(0.05));
|
||||
Assert.That(result[22], Is.EqualTo(0.5433842148912880).Within(0.05));
|
||||
Assert.That(result[23], Is.EqualTo(0.5017780549216030).Within(0.05));
|
||||
|
||||
Assert.That(result[50], Is.EqualTo(0.0741442015957425).Within(0.006));
|
||||
|
||||
Assert.That(result[75], Is.EqualTo(0.0207568945092484).Within(0.006));
|
||||
Assert.That(result[85], Is.EqualTo(0.0136661506653688).Within(0.004));
|
||||
Assert.That(result[90], Is.EqualTo(0.0112550619601327).Within(0.004));
|
||||
|
||||
Assert.That(result[97], Is.EqualTo(0.0087026933539773).Within(0.002));
|
||||
Assert.That(result[98], Is.EqualTo(0.0083995375385004).Within(0.002));
|
||||
Assert.That(result[99], Is.EqualTo(0.0081094156379928).Within(0.002));
|
||||
}
|
||||
|
||||
[Test]
|
||||
@ -41,9 +50,10 @@ namespace FastRngTests.Double.Distributions
|
||||
public async Task TestInverseGammaGeneratorWithRange01()
|
||||
{
|
||||
var rng = new MultiThreadedRng();
|
||||
var dist = new FastRng.Double.Distributions.InverseGammaA3B05();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(-1.0, 1.0, new FastRng.Double.Distributions.InverseGamma());
|
||||
samples[n] = await rng.NextNumber(-1.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min out of range");
|
||||
@ -56,9 +66,10 @@ namespace FastRngTests.Double.Distributions
|
||||
public async Task TestInverseGammaGeneratorWithRange02()
|
||||
{
|
||||
var rng = new MultiThreadedRng();
|
||||
var dist = new FastRng.Double.Distributions.InverseGammaA3B05();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(0.0, 1.0, new FastRng.Double.Distributions.InverseGamma());
|
||||
samples[n] = await rng.NextNumber(0.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
||||
@ -71,7 +82,7 @@ namespace FastRngTests.Double.Distributions
|
||||
public async Task TestInverseGammaGeneratorWithRange03()
|
||||
{
|
||||
var rng = new MultiThreadedRng();
|
||||
var dist = new FastRng.Double.Distributions.InverseGamma { Random = rng }; // Test default parameters
|
||||
var dist = new FastRng.Double.Distributions.InverseGammaA3B05 { Random = rng }; // Test default parameters
|
||||
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
@ -82,29 +93,12 @@ namespace FastRngTests.Double.Distributions
|
||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public void ParameterTest01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.InverseGamma();
|
||||
|
||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Shape = 0);
|
||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Shape = -78);
|
||||
Assert.DoesNotThrow(() => dist.Shape = 0.0001);
|
||||
Assert.DoesNotThrow(() => dist.Shape = 4);
|
||||
|
||||
Assert.DoesNotThrow(() => dist.Scale = -45);
|
||||
Assert.DoesNotThrow(() => dist.Scale = 15);
|
||||
Assert.DoesNotThrow(() => dist.Scale = 0);
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task NoRandomNumberGenerator01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.InverseGamma();
|
||||
var dist = new FastRng.Double.Distributions.InverseGammaA3B05();
|
||||
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
|
||||
Assert.That(await dist.GetDistributedValue(), Is.NaN);
|
||||
}
|
Loading…
Reference in New Issue
Block a user