Added exponential distributions
This commit is contained in:
parent
b437aac4c8
commit
2f4c8b3cc9
@ -1,36 +0,0 @@
|
||||
using System;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace FastRng.Double.Distributions
|
||||
{
|
||||
public sealed class Exponential : IDistribution
|
||||
{
|
||||
private double mean = 1.0;
|
||||
|
||||
public IRandom Random { get; set; }
|
||||
|
||||
public double Mean
|
||||
{
|
||||
get => this.mean;
|
||||
set
|
||||
{
|
||||
if(value <= 0.0)
|
||||
throw new ArgumentOutOfRangeException(message: "Mean must be greater than 0", null);
|
||||
|
||||
this.mean = value;
|
||||
}
|
||||
}
|
||||
|
||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||
{
|
||||
if (this.Random == null)
|
||||
return double.NaN;
|
||||
|
||||
if(this.Mean == 1.0)
|
||||
return -Math.Log(await this.Random.GetUniform(token));
|
||||
else
|
||||
return this.Mean * -Math.Log(await this.Random.GetUniform(token));
|
||||
}
|
||||
}
|
||||
}
|
35
FastRng/Double/Distributions/ExponentialLa10.cs
Normal file
35
FastRng/Double/Distributions/ExponentialLa10.cs
Normal file
@ -0,0 +1,35 @@
|
||||
using System;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace FastRng.Double.Distributions
|
||||
{
|
||||
public sealed class ExponentialLa10 : IDistribution
|
||||
{
|
||||
private const double LAMBDA = 10.0;
|
||||
private const double CONSTANT = 0.1106;
|
||||
|
||||
private ShapeFitter fitter;
|
||||
private IRandom random;
|
||||
|
||||
public IRandom Random
|
||||
{
|
||||
get => this.random;
|
||||
set
|
||||
{
|
||||
this.random = value;
|
||||
this.fitter = new ShapeFitter(ExponentialLa10.ShapeFunction, this.random, 100);
|
||||
}
|
||||
}
|
||||
|
||||
private static double ShapeFunction(double x) => CONSTANT * LAMBDA * Math.Exp(-LAMBDA * x);
|
||||
|
||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||
{
|
||||
if (this.Random == null)
|
||||
return double.NaN;
|
||||
|
||||
return await this.fitter.NextNumber(token);
|
||||
}
|
||||
}
|
||||
}
|
35
FastRng/Double/Distributions/ExponentialLa5.cs
Normal file
35
FastRng/Double/Distributions/ExponentialLa5.cs
Normal file
@ -0,0 +1,35 @@
|
||||
using System;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace FastRng.Double.Distributions
|
||||
{
|
||||
public sealed class ExponentialLa5 : IDistribution
|
||||
{
|
||||
private const double LAMBDA = 5.0;
|
||||
private const double CONSTANT = 0.2103;
|
||||
|
||||
private ShapeFitter fitter;
|
||||
private IRandom random;
|
||||
|
||||
public IRandom Random
|
||||
{
|
||||
get => this.random;
|
||||
set
|
||||
{
|
||||
this.random = value;
|
||||
this.fitter = new ShapeFitter(ExponentialLa5.ShapeFunction, this.random, 100);
|
||||
}
|
||||
}
|
||||
|
||||
private static double ShapeFunction(double x) => CONSTANT * LAMBDA * Math.Exp(-LAMBDA * x);
|
||||
|
||||
public async ValueTask<double> GetDistributedValue(CancellationToken token = default)
|
||||
{
|
||||
if (this.Random == null)
|
||||
return double.NaN;
|
||||
|
||||
return await this.fitter.NextNumber(token);
|
||||
}
|
||||
}
|
||||
}
|
104
FastRngTests/Double/Distributions/ExponentialLa10.cs
Normal file
104
FastRngTests/Double/Distributions/ExponentialLa10.cs
Normal file
@ -0,0 +1,104 @@
|
||||
using System;
|
||||
using System.Diagnostics.CodeAnalysis;
|
||||
using System.Linq;
|
||||
using System.Threading.Tasks;
|
||||
using FastRng.Double;
|
||||
using NUnit.Framework;
|
||||
|
||||
namespace FastRngTests.Double.Distributions
|
||||
{
|
||||
[ExcludeFromCodeCoverage]
|
||||
public class ExponentialLa10
|
||||
{
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialDistribution01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa10();
|
||||
var fqa = new FrequencyAnalysis();
|
||||
var rng = new MultiThreadedRng();
|
||||
|
||||
for (var n = 0; n < 100_000; n++)
|
||||
fqa.CountThis(await rng.NextNumber(dist));
|
||||
|
||||
rng.StopProducer();
|
||||
var result = fqa.NormalizeAndPlotEvents(TestContext.WriteLine);
|
||||
|
||||
Assert.That(result[0], Is.EqualTo(1.00075018434777).Within(0.05));
|
||||
Assert.That(result[1], Is.EqualTo(0.905516212904248).Within(0.05));
|
||||
Assert.That(result[2], Is.EqualTo(0.81934495207398).Within(0.05));
|
||||
|
||||
Assert.That(result[21], Is.EqualTo(0.122548293148741).Within(0.01));
|
||||
Assert.That(result[22], Is.EqualTo(0.110886281157421).Within(0.01));
|
||||
Assert.That(result[23], Is.EqualTo(0.10033405633809).Within(0.01));
|
||||
|
||||
Assert.That(result[50], Is.EqualTo(0.00674300170146).Within(0.005));
|
||||
|
||||
Assert.That(result[75], Is.EqualTo(0.000553499285385).Within(0.001));
|
||||
Assert.That(result[85], Is.EqualTo(0.000203621007796).Within(0.001));
|
||||
Assert.That(result[90], Is.EqualTo(0.00012350238419).Within(0.001));
|
||||
|
||||
Assert.That(result[97], Is.EqualTo(0.0000613294689720).Within(0.0008));
|
||||
Assert.That(result[98], Is.EqualTo(0.0000554931983541).Within(0.0008));
|
||||
Assert.That(result[99], Is.EqualTo(0.0000502123223173).Within(0.0008));
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialGeneratorWithRange01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa10();
|
||||
var rng = new MultiThreadedRng();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(-1.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min out of range");
|
||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max out of range");
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialGeneratorWithRange02()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa10();
|
||||
var rng = new MultiThreadedRng();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(0.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
||||
}
|
||||
|
||||
[Test] [Category(TestCategories.COVER)] [Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialGeneratorWithRange03()
|
||||
{
|
||||
var rng = new MultiThreadedRng();
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa10 { Random = rng }; // Test default parameters
|
||||
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await dist.GetDistributedValue();
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task NoRandomNumberGenerator01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa10();
|
||||
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
|
||||
Assert.That(await dist.GetDistributedValue(), Is.NaN);
|
||||
}
|
||||
}
|
||||
}
|
@ -8,29 +8,40 @@ using NUnit.Framework;
|
||||
namespace FastRngTests.Double.Distributions
|
||||
{
|
||||
[ExcludeFromCodeCoverage]
|
||||
public class Exponential
|
||||
public class ExponentialLa5
|
||||
{
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialDistribution01()
|
||||
{
|
||||
const double MEAN = 1.5;
|
||||
const double VARIANCE = MEAN * MEAN;
|
||||
|
||||
var dist = new FastRng.Double.Distributions.Exponential{ Mean = MEAN };
|
||||
var stats = new RunningStatistics();
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa5();
|
||||
var fqa = new FrequencyAnalysis();
|
||||
var rng = new MultiThreadedRng();
|
||||
|
||||
for (var n = 0; n < 100_000; n++)
|
||||
stats.Push(await rng.NextNumber(dist));
|
||||
fqa.CountThis(await rng.NextNumber(dist));
|
||||
|
||||
rng.StopProducer();
|
||||
TestContext.WriteLine($"mean={MEAN} vs. {stats.Mean}");
|
||||
TestContext.WriteLine($"variance={VARIANCE} vs {stats.Variance}");
|
||||
var result = fqa.NormalizeAndPlotEvents(TestContext.WriteLine);
|
||||
|
||||
Assert.That(result[0], Is.EqualTo(1.0002177398625).Within(0.05));
|
||||
Assert.That(result[1], Is.EqualTo(0.951436545064811).Within(0.05));
|
||||
Assert.That(result[2], Is.EqualTo(0.905034437210948).Within(0.05));
|
||||
|
||||
Assert.That(stats.Mean, Is.EqualTo(MEAN).Within(0.1), "Mean is out of range");
|
||||
Assert.That(stats.Variance, Is.EqualTo(VARIANCE).Within(0.1), "Variance is out of range");
|
||||
Assert.That(result[21], Is.EqualTo(0.35001394450853).Within(0.05));
|
||||
Assert.That(result[22], Is.EqualTo(0.332943563002074).Within(0.05));
|
||||
Assert.That(result[23], Is.EqualTo(0.31670571382568).Within(0.05));
|
||||
|
||||
Assert.That(result[50], Is.EqualTo(0.082102871800213).Within(0.01));
|
||||
|
||||
Assert.That(result[75], Is.EqualTo(0.023522866606758).Within(0.01));
|
||||
Assert.That(result[85], Is.EqualTo(0.014267339801329).Within(0.01));
|
||||
Assert.That(result[90], Is.EqualTo(0.011111415409621).Within(0.01));
|
||||
|
||||
Assert.That(result[97], Is.EqualTo(0.007830082099077).Within(0.008));
|
||||
Assert.That(result[98], Is.EqualTo(0.007448204488898).Within(0.008));
|
||||
Assert.That(result[99], Is.EqualTo(0.007084951269538).Within(0.008));
|
||||
}
|
||||
|
||||
[Test]
|
||||
@ -38,10 +49,11 @@ namespace FastRngTests.Double.Distributions
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialGeneratorWithRange01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa5();
|
||||
var rng = new MultiThreadedRng();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(-1.0, 1.0, new FastRng.Double.Distributions.Exponential());
|
||||
samples[n] = await rng.NextNumber(-1.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(-1.0), "Min out of range");
|
||||
@ -53,10 +65,11 @@ namespace FastRngTests.Double.Distributions
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task TestExponentialGeneratorWithRange02()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa5();
|
||||
var rng = new MultiThreadedRng();
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
samples[n] = await rng.NextNumber(0.0, 1.0, new FastRng.Double.Distributions.Exponential());
|
||||
samples[n] = await rng.NextNumber(0.0, 1.0, dist);
|
||||
|
||||
rng.StopProducer();
|
||||
Assert.That(samples.Min(), Is.GreaterThanOrEqualTo(0.0), "Min is out of range");
|
||||
@ -67,7 +80,7 @@ namespace FastRngTests.Double.Distributions
|
||||
public async Task TestExponentialGeneratorWithRange03()
|
||||
{
|
||||
var rng = new MultiThreadedRng();
|
||||
var dist = new FastRng.Double.Distributions.Exponential { Random = rng }; // Test default parameters
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa5 { Random = rng }; // Test default parameters
|
||||
|
||||
var samples = new double[1_000];
|
||||
for (var n = 0; n < samples.Length; n++)
|
||||
@ -78,25 +91,12 @@ namespace FastRngTests.Double.Distributions
|
||||
Assert.That(samples.Max(), Is.LessThanOrEqualTo(1.0), "Max is out of range");
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public void ParameterTest01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.Exponential();
|
||||
|
||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Mean = 0);
|
||||
Assert.Throws<ArgumentOutOfRangeException>(() => dist.Mean = -78);
|
||||
Assert.DoesNotThrow(() => dist.Mean = 0.0001);
|
||||
Assert.DoesNotThrow(() => dist.Mean = 4);
|
||||
}
|
||||
|
||||
[Test]
|
||||
[Category(TestCategories.COVER)]
|
||||
[Category(TestCategories.NORMAL)]
|
||||
public async Task NoRandomNumberGenerator01()
|
||||
{
|
||||
var dist = new FastRng.Double.Distributions.Exponential();
|
||||
var dist = new FastRng.Double.Distributions.ExponentialLa5();
|
||||
Assert.DoesNotThrowAsync(async () => await dist.GetDistributedValue());
|
||||
Assert.That(await dist.GetDistributedValue(), Is.NaN);
|
||||
}
|
Loading…
Reference in New Issue
Block a user